成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频

EN CN
close
High-Torque Oldham Coupling-A Systematic Study & Engineering Application Analysis
Release date:09 16,2025      Views:

1. Introduction

The Oldham coupling, as a flexible coupling with excellent deviation compensation capability, plays a crucial role in industrial transmission systems. Its unique three-component structure (two hubs with sliding grooves and one intermediate slider) effectively compensates for radial, angular, and axial deviations while maintaining constant speed transmission. With the development of modern industrial equipment toward high-speed, high-precision, and high-reliability directions, higher requirements are being placed on coupling performance.

 

The shaft-hub connection, as a critical link in torque transmission, directly affects the performance of the entire transmission system. Set screw fixation and clamp type fixation, as two main mechanical fixation methods, have their respective application areas and advantages in engineering practice. Set screw fixation generates frictional force through point contact between the screw tip and the shaft surface to transmit torque, offering advantages of simple structure and low cost. Clamp type fixation achieves full-circumference friction connection through uniform radial pressure, providing higher reliability and longer service life.

 

This paper systematically studies the application characteristics of these two fixation methods in high-torque Oldham couplings from multiple perspectives including transmission dynamics, materials science, and reliability engineering. Through a combination of theoretical analysis, numerical simulation, and experimental verification, key issues such as stress distribution patterns, fatigue failure mechanisms, and service life prediction under different fixation methods are thoroughly investigated, providing scientific theoretical basis and practical guidance for engineering design.

 

2. Structure and Working Principle

2.1 Basic Structure of Oldham Coupling

The high-torque Oldham coupling adopts an optimized three-component structure:

Hub Components:

Material: 42CrMo4 high-strength alloy steel

Heat treatment: Quenching and tempering to HRC28-32

Surface treatment: Phosphating or nickel plating to improve wear resistance

Groove design: Involute profile to reduce contact stress

 

Intermediate Slider:

Material selection:

MC nylon: Suitable for general working conditions

POM polyoxymethylene: Suitable for high wear resistance requirements

Copper-based composites: Suitable for high-temperature conditions

Self-lubricating design: Embedded solid lubricant to reduce maintenance needs

 

Fixation System:

Set screw type: Uses grade 12.9 high-strength hex socket screws

Clamp type: Uses special clamping sleeves and high-strength bolts

 

2.2 Torque Transmission Mechanism

The torque transmission capacity of the Oldham coupling can be described by the following model:

T=μ?P?R?N?η

 

Where:

$\mu$: Friction coefficient (0.12-0.18)

$P$: Contact pressure (MPa)

$R$: Action radius (mm)

$N$: Number of contact points

$\eta$: Efficiency coefficient (0.85-0.95)

 

2.3 Deviation Compensation Principle

The coupling achieves the following compensation capabilities through relative movement of the intermediate slider in the grooves:

Radial compensation: ±0.5-3mm

Angular compensation: ±1-3°

Axial float: ±0.5-2mm

 

3. Performance Comparative Analysis

3.1 Torque Transmission Characteristics

Experimental test data:

Clamp Type Fixation:

Torque transmission efficiency: 95-98%

Maximum torque capacity: 50% higher than rated value

Torsional stiffness: 150-200 Nm/deg

Backlash: <0.1°

 

Set Screw Fixation:

Torque transmission efficiency: 80-85%

Maximum torque capacity: 20% higher than rated value

Torsional stiffness: 100-150 Nm/deg

Backlash: 0.2-0.5°

 

3.2 Stress Distribution Analysis

Finite element analysis results:

Clamp Type Fixation:

Stress distribution uniformity: >90%

Maximum stress location: Middle of clamping sleeve

Stress concentration factor: 1.2-1.5

Safety factor: 2.5-3.0

 

Set Screw Fixation:

Stress distribution uniformity: 60-70%

Maximum stress location: Screw contact area

Stress concentration factor: 2.5-3.5

Safety factor: 1.5-2.0

 

3.3 Fatigue Performance Study

Accelerated life test results:

Clamp Type Fixation:

Service life: 10^7-10^8 cycles

Failure mode: Material fatigue

Temperature rise: ΔT<30°C

Wear rate: <0.01mm/1000h

 

Set Screw Fixation:

Service life: 10^6-10^7 cycles

Failure mode: Fretting wear

Temperature rise: ΔT<50°C

Wear rate: 0.05-0.1mm/1000h

 

4. Application Fields and Selection Guidelines

4.1 Applicable Scenarios for Clamp Type Fixation

High-torque applications (>500 Nm)

Rolling mill drives in metallurgical equipment

Hoisting systems in mining machinery

Marine propulsion systems

High-precision requirements

Feed systems of CNC machine tools

Robot joint transmissions

Precision measuring equipment

Harsh working conditions

High-temperature environments (-40°C to +150°C)

Corrosive environments

High-vibration occasions

 

4.2 Applicable Scenarios for Set Screw Fixation

Medium-torque applications (<500 Nm)

Conveyor equipment drives

Fan and pump connections

General industrial machinery

Economical projects

Cost-sensitive applications

Short-term use equipment

Backup equipment

Maintenance convenience requirements

Occasions requiring frequent disassembly

Limited field maintenance conditions

Emergency backup equipment

 

4.3 Selection Decision Model

Establish a selection decision matrix based on the following parameters:

Torque parameters

Rated torque

Peak torque

Torque fluctuation amplitude

Operating parameters

Operating speed

Ambient temperature

Pollution level

Reliability requirements

Design life

Maintenance cycle

Failure tolerance

 

5. Installation and Maintenance Specifications

5.1 Installation Requirements for Clamp Type Fixation

Shaft machining specifications

Diameter tolerance: h6 grade or higher

Surface roughness: Ra ≤ 0.8 μm

Hardness requirement: HRC30-35

Straightness: ≤0.01mm/m

Installation process

Bolt torque control: Use torque wrench, error ±3%

Tightening sequence: Use star-cross sequence

Step-by-step preload application: 50%→80%→100%

Final inspection: Measure radial runout <0.05mm

 

Surface treatment

Cleanliness requirement: ISO 4406 15/12/10

Anti-corrosion treatment: Apply special rust preventive

Contact check: Use blue oil to check contact area

 

5.2 Installation Requirements for Set Screw Fixation

Shaft machining requirements

Recommended to machine flat or dimple

Surface hardness: HRC35-40

Local strengthening treatment: Induction hardening

Surface integrity: No crack defects

Installation specifications

 

Screw preload control: Use torque-angle method

Anti-loosening measures: Use thread locking agent

Position accuracy: Multiple screws evenly distributed

Safety verification: Test anti-slip capability after installation

 

Maintenance requirements

Regular inspection cycle: 500 operating hours

Inspection content: Screw loosening, shaft surface wear

Maintenance records: Establish complete maintenance files

Spare parts management: Prepare special installation tools

 

6. Usage Precautions and Failure Prevention

6.1 Clamp Type Fixation

Overload protection

Install torque limiting device

Set overload alarm system

Regularly check preload status

Temperature management

Monitor operating temperature

Consider thermal expansion effects

Adopt temperature compensation design

 

Surface protection

Prevent installation damage

Regular anti-rust treatment

Avoid chemical corrosion

Reuse specifications

Maximum reuse times: 3 times

Check dimensions before each use

Record usage history

 

6.2 Set Screw Fixation

Strength considerations

Check shaft strength reduction

Consider fatigue strength reduction

Avoid stress concentration superposition

Wear protection

Regularly check wear condition

Use surface hardening treatment

Apply wear-resistant coating

Dynamic balance

Perform dynamic balancing at high speed

Control unbalance amount

Regularly check balance status

Anti-corrosion measures

Special protection for screw areas

Use anti-corrosion materials

Regularly check corrosion condition

 

7. Experimental Verification and Engineering Cases

7.1 Experimental Scheme Design

Establish a complete test platform:

Torque test system

Range: 0-2000Nm

Accuracy: ±0.5%

Sampling frequency: 10kHz

Temperature monitoring system

Infrared thermal imager

Embedded temperature sensors

Data recording system

Vibration analysis system

Triaxial accelerometers

Dynamic signal analyzer

Fault diagnosis software

 

7.2 Experimental Results Analysis

Performance comparison data:

Torque transmission efficiency

Clamp type: 96.5%

Set screw type: 82.3%

Temperature rise characteristics

Clamp type: ΔT=28°C

Set screw type: ΔT=47°C

Life test

Clamp type: 1.2×10^7 cycles

Set screw type: 3.5×10^6 cycles

 

7.3 Engineering Application Cases

Case 1: Steel plant rolling mill transmission system

Equipment: Hot continuous rolling mill finishing train

Torque: 850Nm

Speed: 500rpm

Selection: Clamp type fixation

Result: 18 months continuous operation without failure

 

Case 2: Food packaging machinery

Equipment: High-speed packaging machine

Torque: 120Nm

Speed: 1500rpm

Selection: Set screw fixation

Result: Met usage requirements, cost reduced by 40%

 

8. Conclusion and Outlook

8.1 Research Conclusions

Performance advantages

 

Clamp type shows significant advantages in torque transmission and fatigue life

Set screw type is more competitive in cost-effectiveness

 

Application fields

Clamp type suitable for high-demand industrial scenarios

Set screw type suitable for medium-load applications

 

Technical indicators

Clamp type reduces stress concentration coefficient by 60%

Service life increased by 3-5 times

Maintenance cycle extended by 2-3 times

 

8.2 Technical Outlook

Intelligent development

Integrated sensor technology

Real-time condition monitoring

Predictive maintenance systems

 

Material innovation

Application of new composite materials

Surface engineering technology

Self-repairing material research

 

Design optimization

Multi-objective optimization design

Personalized customization solutions

Digital simulation platform

Standardization process

Improve technical standard system

Unified performance test specifications

Establish reliability database

 

This study provides complete technical guidance for the selection and application of high-torque Oldham couplings through systematic theoretical analysis and experimental verification. Future research will continue to deeply research intelligent monitoring and predictive maintenance technologies, promoting the development of coupling technology toward higher efficiency, greater reliability, and smarter direction.


Guangzhou Link Automation Equipment Co.,Ltd All Rights Reserved.
Follow us : 
成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频
  • <button id="cucog"><input id="cucog"></input></button>
    <li id="cucog"></li>
  • <button id="cucog"></button>
    <abbr id="cucog"><source id="cucog"></source></abbr>
  • 激情五月婷婷综合网| 国产黑丝在线一区二区三区| 91久久精品一区二区二区| 国内成人精品2018免费看| 五月天亚洲精品| 一区二区三区精品在线| 亚洲国产精品精华液2区45| 日韩欧美一区二区免费| 制服丝袜在线91| 欧美精品tushy高清| 欧美日韩一区三区四区| 在线观看www91| 色综合咪咪久久| 色婷婷精品大在线视频| 日本久久精品电影| 欧美日韩国产免费| 91精品欧美一区二区三区综合在| 欧美电影在哪看比较好| 欧美一区欧美二区| 精品精品国产高清a毛片牛牛| 欧美一区二区女人| 久久久久久影视| 国产色91在线| 亚洲欧美日韩小说| 亚洲成人自拍一区| 青青草视频一区| 国产九色精品成人porny| 国产精品自拍毛片| 波多野结衣中文字幕一区| av电影在线观看不卡| 色猫猫国产区一区二在线视频| 欧美一a一片一级一片| 欧美一二三四区在线| 久久综合色天天久久综合图片| 久久精品亚洲国产奇米99| 亚洲欧美色一区| 日韩有码一区二区三区| 国产一区二区调教| 日本高清无吗v一区| 精品处破学生在线二十三| 国产精品三级电影| 亚洲国产精品一区二区www| 久久av资源站| 91视频精品在这里| 26uuu久久综合| 亚洲免费成人av| 久久99热99| 欧美影片第一页| 久久蜜桃av一区二区天堂| 一区二区激情小说| 国产精品一区在线观看你懂的| 色噜噜夜夜夜综合网| 久久这里只有精品首页| 一区二区三区.www| 国产成人精品免费| 6080国产精品一区二区| 亚洲老司机在线| 国产乱码字幕精品高清av | 狠狠狠色丁香婷婷综合激情 | 亚洲视频一区在线观看| 免费三级欧美电影| 色婷婷狠狠综合| 国产色综合久久| 日本少妇一区二区| 91首页免费视频| 国产精品久久一级| 国产麻豆视频一区二区| 日韩视频免费观看高清完整版| 亚洲欧洲韩国日本视频| 国产成人综合网| 日韩欧美国产一区二区三区 | 欧美一区二区三区婷婷月色| 综合色中文字幕| 国产成人午夜电影网| 欧美大片顶级少妇| 美女在线一区二区| 欧美裸体一区二区三区| 亚洲一区二区三区影院| 欧美日韩一区中文字幕| 日本一区二区高清| 成人精品gif动图一区| 久久婷婷一区二区三区| 蜜臀av性久久久久蜜臀aⅴ| 日韩网站在线看片你懂的| 日本最新不卡在线| 欧美成人精品二区三区99精品| 日韩激情中文字幕| 欧美二区三区91| 久88久久88久久久| 精品美女在线观看| 国产乱一区二区| 中文无字幕一区二区三区| 成人丝袜18视频在线观看| 国产精品久久久久久久久动漫 | 欧美日韩卡一卡二| 亚洲成人午夜影院| 欧美日韩国产高清一区二区三区| 亚洲综合免费观看高清完整版在线| 91在线精品一区二区| 亚洲卡通动漫在线| 91麻豆精品国产91久久久久| 免费成人av在线| 久久综合九色综合97婷婷| 岛国精品一区二区| 亚洲人成精品久久久久| 欧美日韩电影在线播放| 日韩制服丝袜av| 国产日韩欧美综合在线| 色悠悠亚洲一区二区| 亚洲福利一二三区| 久久先锋影音av鲁色资源网| 国产不卡视频在线观看| 懂色av噜噜一区二区三区av| 国产欧美日韩在线| 在线观看日韩国产| 久久不见久久见中文字幕免费| 欧美精品一区二区三区蜜臀| www.亚洲在线| 日韩国产在线观看一区| 久久久久久久久久久黄色| 色偷偷成人一区二区三区91| 亚洲成av人片一区二区| 国产三级精品在线| 欧美色爱综合网| 国产一二三精品| 亚洲国产欧美日韩另类综合| 日韩精品中文字幕一区| 成人ar影院免费观看视频| 人人狠狠综合久久亚洲| 国产欧美日韩在线| 日韩亚洲欧美在线观看| 不卡的电视剧免费网站有什么| 美女视频黄频大全不卡视频在线播放| 欧美激情一区二区三区不卡| 在线免费亚洲电影| 国产成人综合网| 日韩av不卡在线观看| 成人欧美一区二区三区| 精品粉嫩超白一线天av| 777色狠狠一区二区三区| 一本色道久久综合精品竹菊| 国内精品视频666| 丝袜亚洲精品中文字幕一区| 中文字幕视频一区二区三区久| 日韩精品一区二| 欧美日韩国产综合一区二区三区 | 日韩欧美区一区二| 在线一区二区三区四区| 床上的激情91.| 久久99久久精品| 午夜精品影院在线观看| 最新国产の精品合集bt伙计| 国产亚洲欧美色| 精品国产免费久久| 欧美精品一区二区精品网| 欧美日韩国产美女| 一本大道久久a久久综合| 99久久综合精品| 成人精品国产福利| 99久久婷婷国产综合精品| 国产精品亚洲第一区在线暖暖韩国| 久久成人免费网| 精品一区二区三区香蕉蜜桃| 轻轻草成人在线| 捆绑紧缚一区二区三区视频| 丝瓜av网站精品一区二区| 视频一区视频二区中文字幕| 亚洲成人久久影院| 婷婷综合另类小说色区| 亚洲高清久久久| 五月婷婷久久综合| 免费看日韩精品| 美女在线视频一区| 精品亚洲porn| 国产麻豆精品一区二区| 成人性色生活片免费看爆迷你毛片| 国产麻豆欧美日韩一区| 国产成人免费在线视频| 本田岬高潮一区二区三区| 成人手机电影网| 色拍拍在线精品视频8848| 欧美主播一区二区三区| 3atv在线一区二区三区| 精品国精品自拍自在线| 欧美日韩免费不卡视频一区二区三区| 欧美高清视频一二三区| 欧美高清精品3d| 久久久久88色偷偷免费| 国产精品久久精品日日| 亚洲国产中文字幕在线视频综合| 天天色天天爱天天射综合| 国产美女一区二区| 一本大道综合伊人精品热热| 91精品国产综合久久精品| 精品国产一区二区三区不卡| 欧美极品美女视频| 亚洲国产一区二区三区| 紧缚奴在线一区二区三区| av男人天堂一区| 91精品综合久久久久久|