成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频

EN CN
close
Diagnostic methods for misalignment in rotating equipment couplings
Release date:10 14,2025      Views:

Couplings can be categorized into various types, each exhibiting different characteristics when misaligned. For instance, rigid couplings demonstrate a rotor bending effect, leading to vibration at the line frequency; claw couplings may exhibit vibrations at frequencies corresponding to the number of claws; and gear couplings might display gear meshing frequencies, among other symptoms. 

 

In field applications, misalignment in diaphragm couplings and flexible elastomer couplings typically manifests as vibrations at 1x and 2x rotational frequencies. In some cases, the 2x rotational frequency may be predominant, while in others, the 1x rotational frequency dominates significantly. This depends on the form of misalignment and the measurement location. 

 

Understanding the type of coupling is essential, as is familiarity with the equipment structure. Different equipment configurations exhibit distinct vibration behaviors under misalignment conditions. For instance, in sleeve bearings, the larger clearance may compensate for misalignment, often preventing noticeable vibration. However, this does not negate the potential for bushing wear, which may eventually manifest through other vibration patterns. Ultimately, the root cause may still be coupling misalignment. 

 

The following section outlines diagnostic approaches specifically for misalignment in diaphragm and flexible elastomer couplings.

5bb56d7c-50c9-45e6-af9a-1c96f466e45c.png


I. Visual Inspection and Testing

 

1. Both types of couplings exhibit strong vibration compensation capabilities. Within certain misalignment tolerances, vibrations may not be prominently observable. However, symptoms such as diaphragm deformation or fracture in diaphragm couplings, or wear in elastomer couplings, may occur. In severe cases, debris from elastomer components may be found on the ground. If any of these signs are detected, realignment should be performed—regardless of whether misalignment is the root cause of the vibration. 

 

2. Misalignment can arise from multiple factors, one of which is structural loosening. Loose foundation bolts typically induce 1x rotational frequency vibration. However, if the loosening severity affects alignment, 2x rotational frequency vibration may emerge. Any looseness should be corrected first. 

 

3. According to Newton’s third law, every force has an equal and opposite reaction. Thus, bearings on both sides of the coupling tend to show the most significant vibration responses under misalignment. Due to potential stiffness disparities between the two sides, the bearing on the less rigid side often exhibits noticeably higher vibration amplitudes, while the stiffer side may show minimal vibration. 

 

4. In large units equipped with sleeve bearings, radial misalignment often leads to lower oil film pressure and temperature in the bearing at a lower position (with a elevated journal), compared to the bearing at a higher position (with a lowered journal). 

 

5. For machinery with rolling element bearings, if significantly high vertical vibration is observed only on the bearing housing adjacent to the coupling—and provided that foundation or connection looseness has been ruled out—angular misalignment (vertical offset) of the coupling should be considered. 

 

6. Thermally induced misalignment often manifests as follows: vibration levels are acceptable upon startup, gradually increase during operation, and eventually stabilize at a higher value. The amplitude of vibration depends on the degree of misalignment caused by thermal expansion.

 

II. Vibration Spectrum and Time-Domain Waveform

In vibration diagnostics, spectrum analysis alone often presents uncertainty. A conclusive diagnosis should integrate observations across vibration location, direction, temperature, load, rotational speed, and other operational parameters. The following describes typical spectral and waveform patterns.

 

Misalignment-induced vibrations typically occur at 1x, 2x, and sometimes 3x rotational frequencies. Depending on the severity and type of misalignment, these frequency components may appear in various combinations.

 

Angular misalignment typically generates predominant 1x vibration.

Parallel offset misalignment mainly produces 2x vibration.

Combined misalignment may result in both 1x and 2x vibrations, and occasionally 3x components as well.

 

In time-domain waveforms, the relative phase between 1x and 2x vibrations determines the waveform shape, often exhibiting "M" shape (?180°) or "W" shape (0° or 180°) patterns. For spectral measurements, data should be collected in Horizontal (H), Vertical (V), and Axial (A) directions. Different misalignment types manifest distinct spectral characteristics across these directions.

Below are typical spectrum and waveform presentations for coupling misalignment:


1.Typical Spectrum for Pure Radial Misalignment

For pure radial misalignment, both 1x and 2x vibration amplitudes are relatively low in the axial direction.

image.png


2.Typical Spectrum for Axial Misalignment

The spectrum displays high 1x vibration amplitude with relatively lower 2x component.

image.png


3.Spectrum with Combined Radial and Axial Misalignment

image.png


4.Waveform with Phase Difference of –180° or 0°/180° Between 1x and 2x


image.png



5.Waveform with 90° Phase Difference Between 1x and 2x

image.png


III. Phase Analysis

The most effective method for diagnosing misalignment is phase analysis across the coupling. A phase difference close to 180° (±40°–50°) between both sides of the coupling strongly indicates misalignment. The severity of misalignment correlates with how closely the phase difference approaches 180°.

 

For accurate diagnosis, compare phase differences in horizontal, vertical, and axial directions on both sides of the coupling. If the shafts are well-aligned horizontally but misaligned vertically, a significant phase difference will be observed in the vertical direction.

 

In cases of coupling misalignment, the radial phase difference between the two bearings supporting the rotor on either side of the coupling tends to be near 0° or 180° (±30°).

 

When comparing horizontal and vertical phase differences, most misalignment cases exhibit a phase difference close to 180° between these two directions. This helps distinguish misalignment from unbalance faults.

 

Phase changes can also indicate real-time alignment variations. For rotors with thermal compensation, a transition from misalignment (at room temperature) to alignment (at operating temperature) may occur, reflected in a phase shift from ~180° to ~0° across the coupling.

 

Compare phases in the vertical, horizontal, and axial directions at each bearing. If the phases on both sides of the coupling are similar, alignment is good. A 180° phase difference radially with in-phase axially suggests parallel offset misalignment.

 

In most practical cases, misalignment is a combination of radial and axial deviations. Regardless of the measurement direction, a phase difference approaching 180° indicates a higher probability of misalignment.




Guangzhou Link Automation Equipment Co.,Ltd All Rights Reserved.
Follow us : 
成年人在线网站,欧美色图五月天,亚洲视屏在线观看,精品国偷自产在线不卡短视频
  • <button id="cucog"><input id="cucog"></input></button>
    <li id="cucog"></li>
  • <button id="cucog"></button>
    <abbr id="cucog"><source id="cucog"></source></abbr>
  • 久久精品一区二区三区不卡牛牛| 久久久亚洲综合| 国产精品乡下勾搭老头1| 九九九精品视频| 国内成人精品2018免费看| 国产精品一区二区久久不卡| 国产成人精品免费在线| 国产91丝袜在线播放| 97久久超碰精品国产| 在线视频国产一区| 日韩欧美国产一区在线观看| 久久久久久免费网| 亚洲欧美电影一区二区| 久久亚洲捆绑美女| 国产精品天天看| 五月天欧美精品| 国产一区二区调教| 欧美视频一区二区在线观看| 日韩精品一区在线观看| 国产精品情趣视频| 天堂午夜影视日韩欧美一区二区| 欧美国产一区在线| 成人黄色片在线观看| 欧美日韩一区二区三区在线| 国产九色精品成人porny| 成人福利视频网站| 欧美精品一卡两卡| 欧美国产一区二区| 最好看的中文字幕久久| 成人永久aaa| 国产精品久久一级| 成人小视频在线观看| 日本一区二区电影| 99国产欧美久久久精品| 亚洲免费三区一区二区| 色婷婷综合久久久| 一区二区三区四区在线| 欧洲国产伦久久久久久久| 亚洲人精品一区| 日本韩国欧美一区| 日本成人在线网站| 精品国偷自产国产一区| 国产精一品亚洲二区在线视频| 久久综合九色综合欧美亚洲| 成人av资源在线观看| 亚洲私人黄色宅男| 欧美日韩你懂得| 久草热8精品视频在线观看| 国产欧美精品国产国产专区| aaa亚洲精品一二三区| 亚洲老司机在线| 91精品国产综合久久久久久| 国内精品国产三级国产a久久| 欧美在线观看视频一区二区| 麻豆成人免费电影| 国产欧美日韩三级| 在线亚洲一区观看| 久久99精品久久久久久久久久久久| 久久综合九色综合97婷婷| 97久久精品人人做人人爽| 亚洲va中文字幕| 久久嫩草精品久久久精品一| 色狠狠色狠狠综合| 国内一区二区在线| 亚洲人快播电影网| 久久综合999| 欧美三级欧美一级| 懂色av一区二区夜夜嗨| 三级一区在线视频先锋| 国产欧美一二三区| 欧美成人伊人久久综合网| 色综合久久综合网97色综合| 精品亚洲porn| 性做久久久久久| 亚洲欧洲精品一区二区精品久久久| 欧美一级一区二区| 欧美午夜影院一区| 色综合天天综合狠狠| 国产精品一区二区三区四区| 三级一区在线视频先锋| 亚洲美女偷拍久久| 久久美女艺术照精彩视频福利播放| 欧美日韩一级二级三级| 91热门视频在线观看| 国产一区二区在线观看免费| 日韩av一级电影| 午夜婷婷国产麻豆精品| 亚洲另类春色校园小说| 国产亚洲福利社区一区| 日韩欧美国产精品| 在线播放视频一区| 欧美性受xxxx黑人xyx| bt欧美亚洲午夜电影天堂| 国产一区二区三区免费观看| 亚洲成人av免费| **性色生活片久久毛片| 国产亚洲制服色| 国产亚洲欧美日韩在线一区| 国产一区二区三区免费播放| 性感美女极品91精品| 国产精品免费视频网站| 精品国产一区二区三区av性色| 91福利视频网站| 国产精品综合一区二区| 天天综合网 天天综合色| 亚洲成人福利片| 一区二区三区四区中文字幕| 国产欧美一区二区精品婷婷| 欧美电影免费观看高清完整版在 | 青青草国产精品97视觉盛宴| 国产免费观看久久| 欧美va亚洲va| 欧美一区二区精美| 欧美日高清视频| 欧美日韩国产美| 欧美欧美午夜aⅴ在线观看| 色一情一乱一乱一91av| 成人看片黄a免费看在线| 国产毛片一区二区| 国产精品中文字幕日韩精品| 久久综合综合久久综合| 日韩专区一卡二卡| 精品一区二区在线播放| 麻豆国产欧美日韩综合精品二区| 亚洲高清不卡在线| 亚洲不卡av一区二区三区| 一区二区三区日韩| 亚洲另类在线制服丝袜| 亚洲视频一二区| 久久色中文字幕| 91精品国产综合久久久蜜臀粉嫩| 欧美三级日韩在线| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 粉嫩欧美一区二区三区高清影视| 激情六月婷婷久久| 国产中文一区二区三区| 国产成人高清在线| 高清免费成人av| 蜜臀久久99精品久久久画质超高清| 国产精品国产三级国产普通话三级| 国产欧美一区二区精品秋霞影院| 国产亚洲欧美中文| 亚洲一二三四在线观看| 日韩中文字幕区一区有砖一区| 国模一区二区三区白浆| 国产夫妻精品视频| 欧美系列在线观看| 欧美高清你懂得| 中文字幕不卡三区| 国产在线播精品第三| 成人高清在线视频| 欧美在线观看你懂的| www国产成人免费观看视频 深夜成人网| 精品国产青草久久久久福利| 国产校园另类小说区| 亚洲人成伊人成综合网小说| 三级亚洲高清视频| 成人晚上爱看视频| 欧美主播一区二区三区| 欧美一级久久久| 国产欧美一区二区精品仙草咪| 一区免费观看视频| 久久99国产乱子伦精品免费| 国产v综合v亚洲欧| 欧美午夜电影网| 精品国产乱码久久久久久夜甘婷婷| 中文字幕久久午夜不卡| 美女视频黄免费的久久| gogo大胆日本视频一区| 欧美亚洲禁片免费| 2021久久国产精品不只是精品| 亚洲色图在线视频| 日韩不卡一区二区| 国产精品资源在线看| 欧美亚洲国产一卡| 国产日韩欧美精品一区| 亚洲一区二区三区四区五区黄| 成人免费视频国产在线观看| 欧美视频精品在线| 久久久99免费| 亚洲精品成人在线| 国产伦精一区二区三区| 日韩一区二区三| 亚洲精品成人精品456| 狠狠色丁香久久婷婷综合_中| 色婷婷久久久综合中文字幕| 国产性做久久久久久| 精品一区二区三区久久| 色视频欧美一区二区三区| www一区二区| 天天综合日日夜夜精品| 99久久国产综合精品女不卡| 中文字幕欧美激情| 日本欧美一区二区三区乱码| 色综合色狠狠天天综合色| 欧美精品一区二区在线观看| 亚洲一区二区三区在线看| 91福利在线免费观看| 欧美国产成人精品| 成人黄页毛片网站|